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Abstract

A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral
precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for
modeling Navier–Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term
in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and;
(2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reac-
tions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solu-
tion of the diffusion equation with fixed and moving reactive solid–fluid boundaries was compared with analytical
solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal
growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited
aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK,
1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and
precipitation in a fracture aperture with a complex geometry were simulated.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical solution of the Navier–Stokes equation in domains with complex boundaries that dynamically
change as a result of geochemical and/or biochemical processes such as mineral precipitation or biofilm
growth presents a very serious challenge to grid-based methods. A number of alternative approaches have
been developed for modeling pore-scale reactive transport [1–3]. These models use Lattice Boltzmann (LB)
methods to simulate fluid behavior and cellular-automata models to simulate evolution of the boundaries
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of the flow domain. Some of these models also use LB methods to simulate the diffusion of dissolved materials
[1,2]. Another approach is to use grid-based methods to solve the diffusion equation instead of LB simulations,
which become unstable for large diffusion coefficients [3]. Pore-scale models based on simplified geometric rep-
resentations of porous media (such as pore-network models that treat porous materials as a network of linear
tubes connecting spherical pore junctions) have also been successfully used to model non-reactive transport in
porous media and estimate transport properties such as a dispersion coefficient (e.g. [4–6]). However, exten-
sion of pore-network models to simulate reactive transport coupled with mineral precipitation and/or biofilm
growth may be problematic because such processes are strongly controlled by pore geometry details.

This paper presents a Lagrangian particle approach based on smoothed particle hydrodynamics (SPH).
This approach uses the same particle discretization of a computational domain to solve both the flow and dif-
fusion equations, and to model surface growth as a result of mineral precipitation. Consequently, numerical
implementation of the SPH model may be easier than coupled LB-finite element cellular automata growth
models. SPH shares with LB the advantages of explicitly conserving mass and linear momentum, and not
requiring explicit interface tracking so that geometrically complex and/or dynamic boundaries can be handled
without undue difficulty. The Lagrangian particle nature of SPH allows physical and chemical effects to be
incorporated into the modeling of flow processes with relatively little code-development effort. In addition,
SPH is manifestly Galilean invariant because particle–particle interactions depend on relative particle posi-
tions and velocity differences. In a Lagrangian framework, there is no non-linear term in the momentum con-
servation equation, so that SPH allows accurate solution of momentum dominated flows. In addition, in a
Lagrangian framework the mass of solute carried by fluid particles remains constant in the absence of molec-
ular diffusion, so there is no numerical diffusion associated with the discretization of the advective term that is
present in a Eulerian framework.

SPH was first introduced by Lucy [7] and Gingold and Monaghan [8] to simulate fluid dynamics in the con-
text of astrophysical applications. Since its introduction, SPH has been successfully used to model a wide
range of fluid flow processes and the behavior of solids subjected to large deformations including high energy
explosions [9], free surface flows such as dam collapse [10], unsaturated flow in fractures [11,12], flow and non-
reactive transport through porous and fractured media [13–17] and flows with homogeneous reactions in an
opposed jet burner [18].

The work described in this paper is based on an SPH model for miscible non-reactive flow developed by
Tartakovsky and Meakin [17]. Two main modifications were made: (1) reaction term representing a heteroge-
neous (surface) chemical reaction was added to the SPH diffusion equation; and (2) a new model for solid
phase growth and/or dissolution was developed and coupled with SPH simulation of flow and diffusion. In
the SPH model, surface reactions are implemented through solid-particle–fluid-particle interconversion. This
allows surface reaction at the geometrically complex time dependent boundaries to be simulated without
employing complicated front tracking schemes. The boundary evolution (growth and/or dissolution) is mod-
eled by tracking the changes in the masses of the solid particles resulting from precipitation/dissolution reac-
tions. The accuracy of the model was verified by quantitative comparison of two-dimensional numerical
results with analytical solutions and qualitative comparisons with Lattice Bolzmann simulations [19]. Finally,
three-dimensional reactive flow through and precipitation within a fracture aperture bounded by fractal sur-
faces was simulated. The results illustrate that the SPH model for reactive transport could be a valuable tool
for studying complex coupled hydro-chemical processes in fractured and porous materials.

2. SPH transport equations

Fluid flow and solute diffusion can be described by a combination of the continuity equation:
dq=dt ¼ qr � v; ð1Þ

the linear momentum conservation equation:
dv=dt ¼ 1=qrP þ l=qr2vþ 1=qFext ð2Þ

and the diffusion equation
dC=dt ¼ Dr2C; ð3Þ
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where v is the fluid velocity, P is the fluid pressure, Fext represents the effects of body forces (such as gravity
acting on the fluid density), l is the fluid viscosity, q is the fluid density, C is the concentration of a solute
dissolved in the fluid (the concentration is defined as the mass dissolved in a unit volume of fluid) and D is
the molecular diffusion coefficient of the solute in the solvent.

For simplicity it is assumed that precipitation/dissolution processes can be described by a first-order kinet-
ics reaction model:
DrC � n ¼ kðCs � CeqÞ ð4Þ

at the fluid–solid surface [19]. In the boundary condition (4), n is the unit vector in the direction normal to the
interface pointing toward the fluid, Cs is the solute concentration at the interface, Ceq is the solute concentra-
tion in equilibrium with the solid and k is the local reaction rate constant. If the solute is sufficiently dilute, the
normal velocity, vn, at which the solid surface advances at position xs on the fluid–solid interface into the li-
quid is given by
vnðxsÞ ¼ DrCðxsÞ � n=qs; ð5Þ

where qs is the density of the precipitated solid phase. The interface condition in Eq. (5) relates the growth
velocity to the diffusive flux of solute in the solution at the interface.

In the SPH simulations, both mobile fluids and solid boundaries are represented by particles. SPH simu-
lations are based on the idea that continuous fields can be approximated by a linear (additive) superposition
of smooth bell-shaped functions centered on point particles. Each particle is endowed with a set of extensive
variables, {a}, and the corresponding scalar field, A(r) is approximated by
ASðrÞ ¼
X

i

ai

ni
W ðr� riÞ; ð6Þ
where ri is the position of particle i, ni = qi/mi is the number density of particle i, qi and mi are the fluid density
and mass of particle i and W is the SPH smoothing function. Similarly, the gradient of the scalar field A is
approximated by
rASðrÞ ¼
X

i

ai

ni
rrW ðr� riÞ: ð7Þ
The SPH approximations for continuous fields and their gradients (Eqs. (6) and (7)) allow the mass and
momentum conservation equations for each particle to be written in the form [17]
ni ¼
X

j

W ðrj � riÞ i; j 2 fluidþ solid particles ð8Þ
and
dvi

dt
¼ � 1

mi

X
j2fluidþsolid

P j

n2
j
þ P i

n2
i

 !
riW ðri � rjÞ þ

1

mi

X
j2fluidþsolid

ðli þ ljÞðvi � vjÞ
ninjðri � rjÞ2

ðri � rjÞ � riW ðri � rj; hÞ

þ Fext
i i 2 fluid particles: ð9Þ
Particles representing solids are frozen in space, but they enter into the calculation of forces acting on the
fluid particles (Eq. (9)). The velocities of the particles representing solid-filled regions are set to zero, and the
number density of the fluid at the particle locations is found from Eq. (8). Tartakovsky and Meakin [12] dem-
onstrated that a combination of stationary ‘‘solid’’ particles with a bounce-back boundary condition (which
returns fluid particles that penetrate into the solid domain to the fluid domain with reversed velocities) can be
used to implement no-slip no-flow boundary conditions almost as accurately as the more rigorous but more
complicated boundary condition proposed by Morris et al. [13] for which artificial velocities are assigned to
the boundary particles. The bounce back boundary condition leads to velocity fields that deviate more from
analytical results than the velocity fields obtained with the artificial velocity method [12]. On the other hand,
the simplicity of the implementation and the computational efficiency of the bounce back boundary condition
justify its use in more complex models.
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To model reactive transport, the sink/source term is included in the SPH diffusion equation [15–17]:
dCi

dt
¼
X

j2fluid

ðDini þ DjnjÞðCi � CjÞ
ninjðri � rjÞ2

ðri � rjÞ � riW ðri � rj; hÞ � R
X

k2solid

ðCi � CeqÞdik; ð10Þ
where Ci is the solute concentration at fluid particle i, R is the effective ‘‘particle’’ fluid–solid reaction rate con-
stant,

P
j2fluid indicates summation over all the fluid particles,

P
k2solid indicates summation over all the solid

particles and
dik ¼
1; jri � rkj 6 d

0; jri � rkj > d:

�
ð11Þ
The solute concentration Ci in Eq. (10) is defined in terms of the mass fraction of the solute, C�i (the mass of
solute dissolved in particle i divided by the mass of solution carried by particle i), Ci ¼ C�imineq

, so the mass of
the solute dissolved in particle i is Ci/neq where neq is the equilibrium particle density (the equilibrium density
of the particles).

The last term in Eq. (10) is the source term modeling the precipitation or dissolution reaction. The function
dij in the source term ensures that the precipitation/dissolution reaction occurs only in a thin layer of thickness
d near the fluid–solid interface. In reality, reactions between minerals and fluids take place in a thin zone with
a width on the order of 1 nm at the fluid–solid interface. This width is much smaller than the range, h, of the
SPH smoothing function, and the SPH approximation broadens the width of the fluid–solid interface to a
value on the order of h.

The masses and viscosities of the fluid particles in Eq. (9) depend on the solute concentration. When the
solute concentration is high, the concentration dependence of the solution density and viscosity can signifi-
cantly affect the flow and result in flow instabilities such as viscous fingering, but in many subsurface appli-
cations concentrations are very low and fluid densities and viscosities can be treated as constants. In our
previous work [17], a linear dependence of the particle masses and densities on solute concentration was
assumed, and Eqs. (9) and (10) were used to simulate the Rayleigh–Taylor instability resulting from the grav-
ity driven displacement of fresh water by salt water. In the subsurface, the concentrations of dissolved species
are very low and in the present work it was assumed, for simplicity, that the masses and densities of the fluid
particles are constant.

3. Precipitation and dissolution

The rate of gain/loss of mass due to precipitation/dissolution of the solid phase must balance the loss/gain
of solute in the liquid phase. From Eq. (10), the rate of mass gain/loss due to interaction between fluid particle
i and solid particle j is �Ri(Ci � Ceq)dij/neq, and the rate of the mass gain/loss due to solid particle–fluid par-
ticle interaction is Ri(Ci � Ceq)dij/neq. The total change of mass of solid particle i due to interactions with all
the fluid particles within distance d is given by
dmi

dt
¼ R

neq

X
j2fluid

ðCj � CeqÞdij i 2 solid: ð12Þ
Since the ‘‘reaction interactions’’ between fluid–solid particles are anti-symmetric, the SPH reactive transport
and precipitation model described by Eqs. (10) and (12) conserves the mass of the solute exactly. The processes
of precipitation and dissolution are modeled by tracking the masses, mi, of the solid particles. Once the mass of
a solid particle i, mi, reaches twice the original mass, m0, the nearest fluid particle ‘precipitates’, becoming a
new solid particle, the mass of the new solid particle is set to m0 and the mass of the old solid particle becomes
mi � m0. A similar approach for simulating surface growth has been used before in LB model simulations [19].

Similarly, if the mass of a solid particle reaches zero, the solid particle becomes a new fluid particle. Since
the new fluid particles will be very close to the solid boundary, where the fluid velocity is very small, the initial
velocity of a new fluid particle is set to zero.

The solid particles are added or removed due to precipitation and dissolution and the volumetric change in
the fluid phase is exactly opposite to the volumetric change in the solid phase. The total change of the solid
mass is described by Eq. (12). Because the volume of fluid changes so does the total mass of the solution. The
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SPH model assumes that the change in the mass of the solution as a result of precipitation (the number of fluid
particles decreases since M fluid particles are replaced by the M solid particles) is equal to the mass of solvent
removed (m0M) plus the mass of the solute dissolved in the fluid particles replaced by the solid particles.

3.1. Relationship between k and R

The relationship between k and R can be found by comparing the fluxes given by Eqs. (4) and (5) and esti-
mated from expression (12). The latter expression can be written in the approximate form:
dhV i
dt
� R

qs

N int

neq

ðhCi � CeqÞ; ð13Þ
where ÆVæ is the average volume of solid in a solid particle within distance d from the interface, ÆCæ is the aver-
age solute concentration carried by the fluid particle within distance d from the fluid/solid interface and Nint is
the average number of the fluid particles that interact with each solid particle. The approximate number of
solid particles in a volume with unit fluid/solid interfacial area is dhD�1neq (D is the dimensionality of the sys-
tem) and the total rate of growth of the solid volume per unit area, or normal velocity of the surface,
dneq

dhV i
dt � vn is given by
vn �
Rd
qs

N intðhCi � CeqÞ: ð14Þ
Comparing (14) with boundary conditions (4) and (5) for the diffusion equation yields the relationship
k � RdN int ð15Þ

between k and R, where Nint depends on the particle number density, d, and, in general, the particle radial
distribution function, g(r). For particles placed on a two-dimensional square lattice, the average number of
the fluid particles that interact with each solid particle, Nint, can be easy calculated. For example for
neq = 16, Nint(d = 0.25) = 1, Nint(d = 0.5) = 2.5 and Nint(d = 1) = 10 and from (15) k(d = 0.25) = 0.25R,
k(d = 0.5) = 1.25R and k(d = 1) = 10R. Numerical simulations presented in this paper show that these rela-
tionships between k and R also hold for irregularly distributed particles as long as the particle density for each
particle (Eq. (8)) does not deviate significantly from the equilibrium particle density.

3.2. Instability of the precipitate front growth

Physically, the growth of a precipitate is an unstable process, and surface roughening will occur as a result
of amplification of perturbations generated by small fluctuations (noise) in the growth process. The concen-
tration gradient at a perturbation protruding into the liquid is larger than the average concentration gradient
at the surface (and the concentration gradients at lagging parts of the front are smaller). Consequently the
roughness of the interface grows because the most advanced parts of the interface (those more exposed to
the supersaturated solution) grow faster than the lagging parts. The surface tension, which can be related
to the thickness of the reactive layer, d, has a stabilizing effect on the surface growth. The early stages of sur-
face roughening under diffusion-limited growth conditions are described by the Mullins–Sekerka linear stabil-
ity analysis [20,21]. Mullins and Sekerka showed that for a sinusoidal perturbation with a wavelength of k or
wavenumber of kk = 2p/k the growth velocity is given by
vðkkÞ ¼ v0kk 1� BfCfDk2
k

� �
¼ v0W ðkkÞ; ð16Þ
where fD is the diffusion length, fC is the capillary length, v0 is the average growth velocity and B is a constant of
order unity. The diffusion length is given by fD = D/v0, and the capillary length is given by fC = CeqCVm/DCRT,
where C is the interfacial energy, R is the ideal gas constant, Vm is the molar volume in the solid phase and
DC = C1 � Ceq, where C1 is the far-field solute concentration. In the absence of an interfacial energy, fC is zero,
and in accord with Eq. (16) the growth rate of the perturbation increases linearly with increasing wavenumber,
kk. The effect of increasing the ‘‘reaction length’’, d, is to smoothen the growth rates over a length scale of order d.
This cuts off the high wavenumber part of the dispersion function, W(kk), leading to an effective dispersion
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function that is very similar the dispersion function given in Eq. (16) with a non-zero capillary length. Conse-
quently, the parameter d plays the role of a non-zero capillary length or non-zero wavenumber cuttoff.

Besides surface tension, the stability of precipitate growth depends on the diffusion length, which can be
related to the Damkohler number Da = kL/D, where L is the characteristic size of the flow domain. Since
the growth velocity increases with the velocity rate constant, k, a larger Damkohler number indicates a smaller
diffusion length if the length L is held constant.

4. SPH algorithm

At each time step in a simulation, the particle number density, ni, is calculated using Eq. (8) and the pres-
sure, Pi, is obtained using the equation of state
P i ¼ P eqni=neq ð17Þ

for all particles i, where Peq is the equilibrium fluid pressure.

The particles acceleration, ai = dvi/dt, and the change of rate of concentration of each particle, dCi/dt, is
found from Eqs. (9) and (10) respectively. New fluid particle velocities, positions and concentrations are found
by time integration using the explicit ‘‘velocity Verlet’’ algorithm [22], which takes the form
riðt þ DtÞ ¼ riðtÞ þ DtviðtÞ þ 0:5Dt2aiðtÞ; ð18Þ

Ciðt þ DtÞ ¼ CiðtÞ þ 0:5Dt
dCiðtÞ

dt
þ dCiðt þ DtÞ

dt

� �� �
; ð19Þ
and
viðt þ DtÞ ¼ viðtÞ þ 0:5DtfaiðtÞ þ aiðt þ DtÞg: ð20Þ
The mass of the solid particles at time t + Dt is given by
miðt þ DtÞ ¼ miðtÞ þ
Dt
2

R
neq

X
j2fluid

ðCjðt þ DtÞ � CeqÞdij þ
X

j2fluid

ðCjðtÞ � CeqÞdij

( )
; i 2 solid: ð21Þ
To obtain a stable solution, the time step, Dt, must satisfy several conditions including the Courant–Fried-
richs–Levy CFL condition [23]:
Dt 6 0:25h=3c; ð22Þ

a constraint due to the particle accelerations [24]:
Dt 6 0:25 min
i
ðh=3jaijÞ1=2 ð23Þ
and a constraint due to viscous diffusion [13]:
Dt 6 min
i
ðqih

2=9liÞ; ð24Þ
where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P eq=neq

p
is the sound velocity and jaij is the magnitude of the acceleration of particle i [10].

A variety of forms, including spline functions Mn with (n � 2) continuous derivatives proposed by Schoen-
berg [25] have been used for the smoothing functions. The M6 smoothing function
W ðr; hÞ ¼ a

3� 3jrj
h

	 
5

� 6 2� 3jrj
h

	 
5

þ 15 1� 3jrj
h

	 
5

0 6 jrj < h=3

3� 3jrj
h

	 
5

� 6 2� 3jrj
h

	 
5

h=3 6 jrj < 2h=3

3� 3jrj
h

	 
5

2h=3 6 jrj < h

0 h < jrj;

8>>>>>>>><
>>>>>>>>:

ð25Þ
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where a ¼ 63
478ph2 and a ¼ 81

359ph3 in two and three spatial dimensions, was used in this work. The compact nature

of the weighting function allows the number of particles required to calculate the density, change in linear
momentum and change in concentration of particle i to be reduced from the total number of particles to
the number of particles located within a distance of h from particle i. A linked-list approach with an under-
lying square lattice (for two-dimensional simulations) or cubic lattice (for three-dimensional simulations), with
the size of the lattice unit equal to the range of the weighting function, h, for computational efficiency, was
used to rapidly locate all of the particles within the range h of the smoothing function from any selected par-
ticle. For computational convenience h was set to unity.

5. Model validation

To validate the model, we conducted two-dimensional SPH simulations of a diffusion problem described by
Eqs. (3)–(5) in an L by M (in units of h) rectangular domain (0 < x < L, with L = 32 and 0 < y < M, with
M = 4) filled with particles with an equilibrium particle density of neq = 16. A reaction boundary condition
(4) was imposed at x = 1, a constant concentration was imposed at x = L � 1 (C (x = L � 1,y) = C0), and
periodic boundary conditions were used in the y direction (C(x,y = 0) = C(x,y = 4), oC/oyjy=0 = oC/oyjy=4).
The initial condition was C(t = 0) = C0 = 16 and the equilibrium density was Ceq = 2. Particles with coordi-
nates (x < 1,y) were labeled as immobile solid boundary particles. The constant concentration at x = L � 1
was imposed by setting the solute concentration at the particles with coordinates (x > L � 1) to C0. The
numerical solutions were obtained for ‘reaction distances’ of d = 0.25, 0.5 and 1 (in units of h).

5.1. Solution of linear diffusion problem (fixed reactive surface)

First the accuracy of the SPH solution of the diffusion Eq. (3) subject to the boundary condition (4) (dif-
fusion and reaction only) was verified. The density of the solid phase was assumed to be infinitely large result-
ing, based on Eq. (5), in an infinitesimally small solid surface velocity, so the reactive surface can be treated as
a stationary solute sink. The analytical solution of the one-dimensional diffusion Eq. (3) subject to the bound-
ary condition expressed in Eq. (4) at x = 1, the prescribed concentration boundary condition C = C0 at x = L 0

(L 0 = L � 1) and the initial condition C = C0 is:
Cðx; tÞ ¼
X1
n¼1

ane�k2
nDt sin½knðL0 � xÞ� þ kðC0 � CeqÞ

D� kL00
ðL0 � xÞ þ C0; 1 6 x 6 L0; ð26Þ
where
am ¼
kðC0 � CeqÞ

kL00 � D
2

km

½�kmL00 cos kmL00 þ sin kmL00�
kmL00 � sin kmL00 cos kmL00

: ð27Þ
In Eqs. (26) and (27), kn is the solution of Dkn/k = tanknL00 and L00 = L � 2.
The SPH solution was obtained with particles located on a regular lattice and positioned irregularly but

with uniform density (ni � neq for all i). It is useful to investigate the effect of particle disorder on the accuracy
of the SPH simulations, because in simulations of fluid flow the configuration of the SPH particles represent-
ing the fluid will unavoidably change and become disordered, even if the original particle configuration was
perfectly ordered. However, the particles do not become ‘‘completely’’ disordered in the sense that the fluctu-
ations in the particle densities ni are limited by fluid compressibility and controlled by the equation of state
(17). In the absence of external forces, Fext = 0 in Eq. (9), the particles would be in a stationary disordered
state. To study the effect of equilibrium particle disorder, particles were randomly inserted into a 32 · 16
box (in units of h). Then Eq. (9) with Fext = 0 and periodic flow boundary conditions was applied to the par-
ticle system until it reached an almost uniform equilibrium state (fluctuations in the densities measured at the
particle centers via Eq. (1) or Eq. (8) were smaller than 0.001%). This eliminates long range density fluctua-
tions and leaves the system in a locally disordered state.

We found that the SPH solution obtained with both regular and irregular particle distributions compares
very well with the analytical solution for all values of d. Fig. 1 shows the concentration as a function of x at
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Fig. 1. Dimensionless concentration C/Ceq versus distance (in units of h) at different times (in dimensionless SPH model time units)
obtained analytically (open diamonds) and from SPH simulations with regular (solid line) and irregular (open circles) particle placement
with d = 0.25 (in units of h), L = 32 (in units of h), Da = 0.375, k/R = 0.25 (in units of h), C0/Ceq = 8 (D = 0.1, R = 0.005, k = 0.00125).
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different times obtained analytically from expression (26) and from SPH simulations with D = 0.1,
k = 0.00125, C0/Ceq = 8 and d = 0.25. Fig. 2 shows similar results for d = 0.5. Figs. 1 and 2 show very good
agreement between the analytical and SPH solutions obtained with both regular and irregular particle
placement.

5.2. Solution of a non-linear diffusion problem (moving reactive surface)

Next we verified the accuracy of the SPH solution of the non-linear diffusion problem with a moving liquid–
solid interface given by Eq. (5). For simplicity, the density of the solid phase was made equal to the density of
fluid, so that the initial mass of the solid particles, m0, was equal to unity.
x
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Fig. 2. Dimensionless concentration C/Ceq versus distance (in units of h) at different times (in dimensionless SPH model time units)
obtained analytically (open circles) and with SPH with regular (solid line) and irregular (open diamonds) particle placement with d = 0.5
(in units of h), L = 32 (in units of h), Da = 0.375, k/R = 1.25 (in units of h), C0/Ceq = 8 (D = 0.1, R = 0.001, k = 0.00125).
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If noise (or random numerical errors) can be avoided and the initial solid boundary is perfectly flat (this can
be achieved only by placing SPH particles on a regular lattice) the growing surface will remain flat. Under
these conditions, the problem of diffusion and boundary growth in the domain described above is governed
by the one-dimensional diffusion Eq. (3) subject to the one-dimensional versions of boundary conditions
(4) and (5) at x = L 0, a prescribed concentration boundary condition at x = 1 (C (x = 1,y) = C0), the initial
concentration distribution C(t = 0) = C0 and the initial position of the solid boundary S, S(t = 0) = S0, where
S0 = L 0. Analytical solution of this non-linear problem is complicated by the moving boundary. To simplify
the derivation of an analytical solution it is commonly assumed [26] that for slow growth processes with small
Peclet numbers the time derivative in the diffusion equation can be disregarded (a quasi-stationary approxi-
mation is used). Under this assumption, the analytical solution of this problem is
Fig. 3.
simula
diffusio
Ceq =
SðtÞ ¼ ðD=k þ L0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD=k þ L0 � S0Þ2 � 2DðC0 � CeqÞt=qm

q
: ð28Þ
The SPH precipitation model may result in an artificially increased average precipitate density depending on
the value chosen for d. For large d not all solid particles reacting with the fluid particles have time to double
their masses before the fluid–solid front advances sufficiently for these particles to become non-reactive with
masses greater than m0. In the simulations with d = 0.25, the average density of the solid particles in the pre-
cipitate, qm, is m0neq, for d = 0.5 qm = 1.25m0neq, and for d = 1 qm = 1.47m0neq.

Figs. 3–5 show the front position as a function of time obtained analytically and from SPH simulations
with d = 0.25, 0.5 and 1, respectively. The parameters D = 1, k = 0.001 and C0/Ceq = 8 were used in these sim-
ulations. The SPH solution for uniform front growth (obtained with regular particle placement) compares
very well with the analytical solution (28) for d = 0.25 (Fig. 3) and d = 0.5 (Fig. 4). For d = 1, the SPH solu-
tion fluctuates slightly around the analytical solution, see Fig. 5. SPH simulations with irregular particle dis-
tributions introduce random noise at the surface, and this leads to non-uniform surface growth. Figs. 6–8
show unstable growth of the interface, initially perturbed as a result of irregularly particle placement, for
d = 0.25, 0.5 and 1, respectively. The roughness of the front decreases with increasing d. Fig. 9 depicts the var-
iance of the front, the mean square deviation of the front position from the average position of the rough
front, as a function of the average front position for differenet values of d. Fig. 9 shows that the front variance
increases with average front position and decreases with increasing d. It can be seen that an increase in d pro-
duces a smoother front, indicating that d acts as a surface tension and has a stabilizing effect on the surface
growth. Figs. 3–5 also compare the time dependence of the average position of the front calculated with non-
uniformly placed particles with the time dependent front positions calculated analytically and using regularly
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placed particles. The average positions of the non-uniform fronts obtained with d = 0.25 and d = 0.5 propa-
gate faster than the uniform front. The rate of propagation of the non-uniform front increases with decreasing
d and with time as the front becomes more irregular. On the other hand, the average position of the more sta-
ble front obtained with d = 1 advances with the same rate as the uniform front. A two-fold increase in reso-
lution (from L/h = 32 to L/h = 64) increased the average front position by less than 2%.

5.3. Precipitation in the presence of flow

To further investigate the effect of particle disorder, precipitation in the presence of fluid flow was investi-
gated. The flow was initiated by applying uniform body forces acting on the particle masses in the y direction.
The particles with x coordinates greater than 31 were prescribed a constant concentration of C = C0, and they
were frozen in space to created a no-flow boundary condition for the Navier–Stokes equation (the solid reac-
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tive surface initially located at x = 1 also served as a no-flow boundary). The initial concentration of the fluid
particles was assigned a value of C0, and periodic boundary conditions were imposed at the vertical bound-
aries. Apart from the small disturbances at the perturbed solid boundaries, the concentration profile and pre-
cipitation rate should not be affected by the flow. The average position of the front as a function of time for
this simulation is shown in Fig. 10. It can be seen that at early times in the simulations, the perturbed front
grows with the same velocity as the unperturbed front. It shows that particle disorder caused by the laminar
flow does not significantly affect the accuracy of the SPH solution of the diffusion equation and the SPH pre-
cipitation (adsorption) model. The initial Reynolds number was Re = 864 and the Peclet number was Pe = 54,
both of which decreased with time as the gap between the upper and lower no-flow boundaries decreased as a
result of precipitation. At later times, the precipitation front propagation rate in the presence of fluid flow was
slightly larger than the front propagation rate in the absence of flow. While a small increase in the front prop-
agation velocity could be a result of increasing particle disorder with increasing time, it could be also a result
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of the slight increase in solute concentration at the solid boundary due to the fluid mixing caused by the
growth of front perturbations. In addition, fluid flow parallel to a rough surface could bring more concen-
trated solution into proximity with the protruding parts of the surface leading to faster growth of the protru-
sions and more unstable surface growth (more rapid growth of the surface roughness).

The error due to particle disorder can be significantly reduced by periodically remeshing the particles
[18,27].

5.4. Effect of Damkohler number and reaction length parameter d on the nucleus growth

First we studied the effect of the Damkohler number on the growth of an initially perturbed circle (with a
radius given by r = 10 + 5cos(4h), 0 < h < 2p). The initial solute concentration was set to 8Ceq, a constant con-
centration of 8Ceq was maintained at a distance L = 30 from the center of perturbed circle, and the boundary
conditions given in Eqs. (4) and (5) were imposed at the surface of the perturbed circle. The reaction length
parameter d was set to d = 0.5. Growth with Da = 37.5 (R = 1, k = 1.25, D = 1) produced a highly unstable
dendritic structure (Fig. 11a) while growth with Da = 3.75 (R = 0.1, k = 0.125, D = 1) resulted in the forma-
tion of a more compact and regular (almost symmetric) morphology (Fig. 11b). This is also consistent with the
Mullins–Sekerka Eq. (16). The diffusion length in the simulation used to obtain Fig. 11a is smaller than the
diffusion length in the simulation used to obtain Fig. 11b, and a longer diffusion length is expected to lead
to a more stable growth process (a process in which instabilities grow more slowly and the minimum unstable
wavelength is longer).

Figs. 12 and 13 show the effect of the Damkohler number, Da, on growth from a small circular nucleus with
a radius of 0.5 (in units of h) located in the center of the computational domain. A constant concentration of
C0 = 16 was maintained at a distance of L = 64 (in units of h) from the center of the nucleus. The equilibrium
concentration, Ceq, was set to 13.3. Table 1 gives a summary of parameters used in these simulations, and the
effective fractal dimension, Df, of the resulting precipitating structures. The effective fractal dimension, Df, was
found from the relationship:
Fig. 11
circle.
N part � rDf ; ð29Þ

where Npart is the number of solid particles within the distance r from the center of the nucleus. For an ideal
fractal, Eq. (29) describes the mass/length scaling over an infinite range of length scales [28]. For finite objects
with characteristic lengths (such as the particle size, the nucleus size and the radius of the pattern for the mor-
phologies shown in Fig. 12) this relationship holds approximately over the intervening length scales, and the
exponent, Df, obtained using Eq. (29) is called the effective fractal dimension. Fig. 13 shows, that for r greater
than several h and smaller than 85% of the size of the pattern, ln(Npart) increases linearly with ln(r) indicating
. Growth of perturbed circle with d = 0.5. (a) Da = 37.5; (b) Da = 3.75. Gray particles show the initial shape of the perturbed
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Fig. 12. Growth from the nucleus with d = 0.5 and Da = 560, 80 and 8.

Table 1
Parameters of the simulations of the crystal growth from the nucleus

d R/k D Da = kL/D Fractal dimension

0.5 7/8.75 1 560 1.66
0.5 1/1.25 1 80 1.74
0.5 0.1/0.125 1 8 2
1.0 0.76/8.74 1 560 1.67
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that the growing structures are fractals. For Da = 560 and d = 0.5 the growth results in a disorderly dendritic
structure with an effective fractal dimension of Df = 1.66. For the closely related diffusion limited aggregation
(DLA) model [28,29] an effective fractal dimension of about 1.715 is obtained from off-lattice simulations [30]
and a somewhat smaller fractal dimension is obtained from lattice models (Df � 1.68 for large clusters on a
square lattice [31]). The effective fractal dimension of 1.66 obtained for the pattern shown on the left-hand
side of Fig. 12 (which covers a relatively small range of length scales) which was obtained using a Damkohler
number of 560 is consistent with the idea that the SPH precipitation model in the Da!1 limit is essentially
equivalent to (is in the same universality class as) the DLA model. Because the constant concentration bound-
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ary condition is not imposed at infinity (Da 6¼ 1), the initial solute concentration is not zero and the concen-
tration imposed at the distant boundary does approach the CO! 0 limit (fD 6¼ 1), the growth process is not
exactly a DLA process, and for this reason we expect that the branched pattern is not exactly a DLA fractal.
This is another reason why Df is an effective fractal dimension. For Da = 8 and d = 0.5, the effective fractal
dimension was Df = 2 (the pattern is compact and uniformly fills the two-dimensional space). These results
are also consistent with the Lattice Boltzmann crystal growth simulations of Kang et al. [19] who obtained
Df = 2 from their model with Da = 2 and Df = 1.75 for growth with Da = 600. Discrepancies on the order
of 0.1 in the effective fractal dimension are not surprising when the range of length scales between character-
istic lengths is on the order of one to two decades, and the growth process is not in the asymptotic DLA limit.
The effective fractal dimension depends on the method used to estimate the fractal dimension, the range of
length scales and the cross-over/finite size effects, which can depend on model details.

We found that the increase in d leads to a fractal dendritic pattern with thicker branches. Similar patterns
are obtained with diffusion limited aggregation models with sticking probabilities less than unity (the ran-
domly walking particles do not always stick the first time they contact the growing cluster) that increase as
the coordination number of the unoccupied surface sites increase [30]. A similar effect results from including
the effects of surface energy (the growth rate is enhanced in concave regions and diminished in convex regions)
and the thickening of the branches is consistent with the idea that an increase in the reaction length, d, has an
effect similar to increasing the surface energy.

6. Flow, reactive transport and precipitation in fractures

The full capabilities of the SPH model were illustrated by simulating flow, reactive transport and precipi-
tation in a rough-walled three-dimensional fracture. A self-affine fractal model with a Hurst exponent of 0.7
was used to generate the geometry of the fracture walls. The fractal model is based on numerous observations
indicating that the fracture surfaces of brittle materials, including rocks, have a self-affine fractal geometry,
which can be characterized by a Hurst exponent with a more or less material independent (quasi-universal)
value of about 0.7 [32]. The algorithm used to generate the fracture walls and the geometry of the fracture
aperture is described in Tartakovsky and Meakin [17]. The fracture size in the lateral directions (parallel to
the plane of the fracture) was 16 · 16 in units of h and the (vertical) thickness of the computational domain
was 16h.

To set up an SPH simulation the particles were randomly placed in the 16 · 16 · 16 domain and then equil-
ibrated using the SPH equation of motion with zero gravitational acceleration. After the particle densities, ni,
became uniform, the fracture geometry was imposed on the particle system. The particles inside the fracture
were designated as fluid particles, the particles outside of the fracture aperture, within a distance h from the
self-affine surfaces, were ‘frozen’ and labeled as boundary particles creating the fracture walls, and the rest of
the particles were removed. Periodic flow boundary conditions were used in the x and y directions, parallel to
the plane of the fracture. The flow was initiated by applying a gravitational acceleration of g = 0.01. The vol-
ume of the fracture aperture was 709h3, the equilibrium particle number density, neq, was 36, and the total
number of mobile particles representing the fluid was 25,513. The equilibrium pressure, Peq, was assigned a
value of 144, and a viscosity of l = 3 was used.

Once the flow of the fluid representing the solvent had reached a steady state, the time was set to zero, d was
set to 1, the initial concentration of the solute in the fracture was set to Ceq = 2, and solute with a concentra-
tion of C = 4Ceq was injected at 5 < x < 6. The corresponding boundary condition C(5 < x < 6) = 4Ceq was
implemented by setting the concentrations Ci of the particles i that passed the injection zone to 4Ceq.
Fig. 14 shows a three-dimensional view of the minerals precipitated on the walls of the fracture (the upper wall
of the fracture was removed for better visualization) and several cross-sections in the direction parallel to the
flow at dimensionless time of t = 520. Precipitation (the precipitated mineral is denoted by red particles)
occurs around the solute injection area. Fig. 15 shows the average fluid flux q through a cross-section of
the fracture perpendicular to the direction of flow, q ¼

R
S vxðxÞdx=SA (vx is the x-component of the velocity

vector, S is the cross-section of the fracture aperture at x = 16 and SA is the cross-section area at the start
of the simulation). The figure shows that the flow through the fracture aperture decreases as the aperture is
occluded by the precipitated solid. In continuum subsurface reactive transport simulations it is common



Fig. 14. Mineral precipitation in a fracture aperture with self-affine walls resulting from reactive transport with Da 0 = 1.37 and Pe = 19.43
at dimensionless time t = 520: (a) a three-dimensional view of the precipitated minerals (red particles) and lower fracture wall (light blue
particles); (b–d) cross-sections in the direction parallel to the flow at y = 4, 8 and 12h. The dark and light blue particles represent the upper
and lower walls of the fracture (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.).
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[33] to describe the changes in the average concentration in the fractures hCfi ¼
R

V r
CðxÞdx=V r (Vr is the rep-

resentative volume of the fracture) using an effective reaction rate coefficient Ref. The rate coefficient, Ref, can
be calculated from
ohCfir
ot
¼ Ref ½hCfi � Ceq�; ð30Þ
where oÆCfær/ot is the change in the average concentration due to reaction only. Fig. 16 shows the dependence
of oÆCfær/ot on ÆCfæ � Ceq calculated during the reactive transport simulation. The slope is proportional to the
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effective rate constant, Ref. It can be seen that oÆCfær/ot, and hence Ref, changes non-linearly during the sim-
ulation, and the dependence of oÆCfær/ot on ÆCfæ � Ceq has two branches resulting in non-constant and non-
unique (multi-valued) reaction rate coefficients. The concentration in the fracture initially increases because of
advection. Later on, advection decreases as precipitated minerals begin to occlude the fracture aperture and
reduce the fluid flux, and the solute concentration in the aperture decreases because the flux of solute into the
aperture decreases. The non-unique behavior of Ref during the early and later parts of the simulation may re-
sult from the changing reactive surface area of the fracture. The average effective rate coefficient can be found
by fitting a straight line to the data in Fig. 16. For the simulation described above the value of the average
effective reaction rate coefficient is Kef = 0.018. The dimensionless numbers (the Damkohler and Peclet num-
bers) controlling reactive transport for this simulation are: Da 0 = Refl

2/D = 1.37 and Pe = ql/D = 19.43, where
l = 2.76 (in units of h) is the average width of the fracture aperture and q = 0.7 is the average flux (both esti-
mated before precipitation occurred). From Fig. 14 it can be seen that due to the relatively large Damkohler
number precipitation occurred mainly around the solute injection region. As the Damkohler number decreases
and/or the Peclet number increases precipitation along the fracture wall will become more uniform. A detailed
study of the effects of the Damkochler and Peclet numbers on precipitation in three-dimensional fractured and
porous media will be a subject of the future research.

7. Conclusions

A new numerical model for reactive transport and mineral precipitation in fractured and porous materials,
based on SPH, was developed. The surface reaction, usually treated using a mixed boundary condition, is
modeled through solid–fluid particles interactions added into the SPH diffusion Eq. (10). The unique relation-
ship between the ‘‘particle’’ fluid–solid reaction rate constant, R, and the standard local reaction rate constant,
k, was derived. The SPH solution of the diffusion equation was validated against analytical solutions for cases
in which the surface growth can be disregarded (the linear diffusion problem) and for uniform surface growth
(non-linear surface growth). It was found that initial perturbation of the solid surface caused by an irregular
particle distribution leads to unstable growth. An increase in the reaction length parameter, d, was found to
have a stabilizing effect on the non-uniform surface growth. Fluid flow along the reactive surface slightly
increased the precipitation rate. The slight increase in the growth rate could be due to increased particle dis-
order but it could also be due to increased mixing and higher solute concentrations at the growing reactive
surface.

The SPH model was used to simulate growth from a nucleus in a supersaturated solution, and it was found
that this produces fractal structures with effective fractal dimensions ranging from Df = 2 for compact growth



A.M. Tartakovsky et al. / Journal of Computational Physics 222 (2007) 654–672 671
in the reaction-limited growth limit (small Da number) to Df = 1.66 for the dendrite structures in the diffusion-
limited growth limit (large Da number). The upper limit of the fractal dimension corresponds to the dimension
of the embedding space. The lower limit is close to the fractal dimension (Df � 1.7) found for diffusion con-
trolled cluster formation. A similar relationship between the Damkohler number and the fractal dimension of
the dendritic structure was found in Lattice Boltzmann growth simulations. An increase in the reaction length,
d, resulted in a more compact growth with larger fractal dimension.

The SPH model was also used to simulate three-dimensional reactive transport in a fracture aperture with
self-affine fractal surfaces. The results were used to calculate the effective reactive rate coefficient of the frac-
ture. A non-unique time-dependent effective reaction rate coefficient was observed. The results illustrate that
the SPH based reactive transport model can be successfully used to study complex coupled phenomena such
flow, reactive transport and precipitation in porous and fractured media.

One of the deficiencies of the SPH, and other Lagrangian particle methods, is the high computational cost
in comparison with the grid-based numerical methods. The three-dimensional simulations (consisting of
52,000 time steps with a 72,169 particle system) described in this paper required approximately 100 h of
CPU time on a PC with a 3.0 GHz processor. Fortunately, SPH is similar to molecular dynamics methods.
Consequently, SPH code that runs efficiently on parallel computers with a variety of architectures can be
developed, and the growing speed of modern computers will make it possible to significantly increase the res-
olution of the simulations and reduce computational time in the near future.
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